details

Getting Down to the Details

Live from behind a stack of full-scale detail drawings, it’s the Thermal Mass and Buoyancy Ventilation Research Project Team! Lately, the team has been investigating all details inside and out. Starting out with material pallet and ending up at chimney flashing, the team is kicking it into high gear.

Cladding Material

Unsurprisingly for a project so focused on the interior systems, it was difficult to make decisions regarding cladding. Initially, as seen in previous models shown above, the team experimented with separate cladding systems for the chimneys, Cooling Porch ceiling, and exterior walls. For iteration 1 of the test building design included a timber open-joint cladding system wrapping every surface. Next, for iteration 2, the cladding system wrapped only on the exterior wall faces of the buildings and the adjoining chimney faces. However, thin sheet metal covered the roof, cooling porch ceiling, and the chimney faces which touch those surfaces.

The consistent cladding of iteration 1 appealed better to the monolithic nature of the SIPs structure. It also reinforced the importance of the chimneys to the buildings as a whole from the exterior. From there the team began to test if the timber was the correct mono-material for the test buildings. Seen above are renderings testing different materials for the cladding, columns, retaining walls, and benches. It is important to view these materials as they interact in the Cooling Porch. While sheet metal and polycarbonate cladding options may look more monolithic, timber is a low carbon material that better represents the heart of the project. In some cases, timber as a building material acts as a carbon-sink meaning it stores and processes more carbon than it produces. This of course relates strongly to the passive goals of the Thermal Mass and Buoyancy Ventilation Research.

Recycled Retaining Wall

Now the team is settled on the timber cladding, but they are not convinced of the retaining wall and bench materials. These aspects want to be a more earthen material as they rise from the ground towards the test buildings. After investigating rammed earth and concrete, the team wanted to find something more stackable. Concrete and rammed earth are beautiful, but they require formwork which requires more time. Something stackable will give the team more flexibility as well as members are movable.

Thankfully, down here on Highway 61 road work is being done to remove a load of 8″ x 8″ x 8′ stackable concrete barriers. The TMBVRP team is getting their hands on some of these reusable members and are calling around to local highway departments to find more similar materials. If they find enough, they will have a durable, stackable, and reusable material for their Cooling Porch. They can also use the old sidewalk pieces as a mosaic, ground material for the Cooling Porch. Above are drawings showing the use of these recycled materials.

Structure and Detailing

For the past three weeks, the team has been meeting consistently with Structural engineer Joe Farrugia. He is guiding the team through lots of math to size their columns. While the gravity load on the columns is extremely manageable, the wind load is more difficult. The test buildings height means they will face more wind load than a structure this size typically experiences. However, Joe is confident that the structural system the team has chosen is doable with the correct column sizing.

While the team is attempting to draw every detail of the test buildings, they’ve found the trickiest spots to be around the chimneys. Making sure water moves off the roof consistently and air moves behind the ventilated screen is crucial. The TMBVRP will spare you the pain of walking through each flashing bend and board cut. Struggles emerge when the chimneys converge with the angled roof, but it’s very doable with lots of thinking, drawing, and redrawing. Then Andrew Freear and Steve Long, come in to save the day because how you’ve redrawn it five times is still wrong. Lots of covered wall reviews later and the TMBVRP team is on their way to compiling all the details in a digital model and drawing set.

Looking forward to keeping this momentum going, the TMBVRP can be found in Red Barn from dawn to dusk. Feel free to bring by some late-night snacks but for now thanks for TUNING in!

Formwork makes the Dreamwork

Studio

This week, the 3rd-years worked on creating detail drawings of Ophelia’s Home’s foundation. Being able to see the foundations in person while drawing them is an amazing, unique opportunity. It has quickly given the students an understanding of how crawl-space foundations work. Each student selected a unique piece of the foundation to draw. These drawings will eventually be added onto to create 7 complete section cuts. The drawings show details through the foundation piers, vents, below significant areas, and the front porch. All the drawings were organized onto one construction document sheet, which is a new and very important skill for the 3rd-years to have learned.

Horseshoe Courtyard

This week, the 3rd-years’ continued work at Horseshoe Courtyard consisted of cleaning more bricks. They also began building and setting up wooden formwork for the incoming concrete! Students worked to hammer in stakes, cut wood boards, and drill formwork into place. They are extremely excited (some may say overly excited) about the concrete pour.

Perry Lakes Park

After a few weeks of working in Hale County, half of the 3rd year students ventured out to Perry Lakes Park to help with maintenance and repair. This included working with 5th-year students and graduate students to clear large debris from pathways and replace aging timber boards on the elevated walkways and the Birding Tower. Perry Lakes Park is currently closed to the public until it is rejuvenated. However, once the Rural Studio Students are finished, the park will be open for bird enthusiasts, outdoor lovers, and adventurers alike. 

Workshop #6 Jake LaBarre

With his extensive background in construction and carpentry, Jake LaBarre has been teaching students how buildings come together and how to detail them since 2011, even acting as 3rd-Year Visiting Assistant Professor at Rural Studio for a year. Jake lives in Seattle, teaching a design-build studio at the University of Washington, and he currently works at Building Work.

The Detailing and Construction workshop, taught by Jake LaBarre, taught students how to begin detailing buildings. The intent of the workshop was for students to gain a better understanding of constructability through the examination of the order of operations in detailing. In order to achieve this, the workshop examined past Rural Studio projects to learn why and how they were detailed. In order for students to even think about creating their own details, they first needed to understand how other buildings were detailed and why those decisions were made.

This workshop acted as a complement and follow-up to the earlier Contemporary Structures, by Emily McGlohn. Firstly, it provided a better working understanding on typical components used in building assemblies. More importantly, Jake stressed the importance of not relying only on flat two-dimensional drawings of wall sections using three-dimensional drawings but to use three-dimensional drawings as well. This became clear to students when they constructed drawings of axons for the same buildings they had previously drawn sections for in the Contemporary Structures workshop. Students realized just how much information was not included when just shown in section. By drawing out how materials come together, the kinds of fasteners that were used, and the three-dimensional thicknesses added another layer of information about how the buildings were constructed.

Students gained the confidence to know where to start detailing. It became clear that before beginning any project that they should first do thorough precedent research. With so many details out there—even just in the catalog of Rural Studio projects where previous students spent a great deal of time figuring out the detailing—so there is no need to start from scratch.