Chimney Cricket!

The desktop experiment mock-up, “The Chimney,” is complete and already bringing in data! Here is a quick look into the making of the Thermal Mass and Buoyancy Ventilation Research Project Team’s first dive into building a scientific instrument.

Before we get into the construction of a scientific experiment in the non-scientific environment shown above, let’s go back to the Fabrication Pavilion where all the prep work was done. The team used the twelve (recently built) 1′ x 1′ concrete panels to create the four walls of the chimney. For each wall, three concrete panels were screwed to a base of foam atop OSB through the 1/2″ pex pipe that was cast into the panels.

After the four walls were completed, the team tested how they fit together. The OSB and foam base extends past the concrete panels in order for the walls to fit into one another. This also allows for continuous insulation of the concrete chimney within. As seen in the last TMBV Research Project team post, insulation is key. Therefore, the chimney sits atop 1′ of geofoam and has another 1′ geofoam hat. The ventilation PVC pipes run through this geofoam on the top and bottom and connect to the chimney’s interior chamber. This is why the chimney is lifted off the ground by the wooden base, to let air in and out the bottom ventilation pipe.

Next up we have the sensors. The sensors must make it through a foot of insulation in order to take the temperature of the chimney interior chamber air, the surface of the concrete panel, and the backside of the concrete panel. There are also sensors outside of the chimney to measure the exterior air temperature.

The interior air temperature tells the team how the thermal mass and buoyancy ventilation proportions are effecting the interior space while the panel surface and backside temperatures tell the team how efficiently the thermal mass is working. The sensor wires are encased in gasket that runs through holes in the foam, OSB wall to the outside so sensors can be charged without disassembling the whole chimney.

The sensors the Thermal Mass and Buoyancy Ventilation Research experiment used are called Green TEG sensors. They transmit data using cell service so all your data can be downloaded from online or watch your data in real-time. This is a blessing and a curse as this makes Green TEG data very convenient, however, while the Morrisette campus has great Wifi, the town of Newbern does not have great cell service. Therefore, the experiment was transported to an undisclosed carport in Greensboro, just 15 miles down AL Highway 61 where it was assembled the rest of the way.

Next up, the Thermal Mass and Buoyancy Ventilation Research Project Team will calibrate, or modify, the experiment once they see how it is performing. After that, the team can start with a wooden chimney. Thanks for tuning in!