research project

It’s Retainin’ Men (and Livia)

Live from the Cooling Porch, it’s the Thermal Mass & Buoyancy Ventilation Research Project team! Recently, the students focused on the demonstration space beneath the Test Buildings known as the Cooling Porch. Specifically, they began constructing the retaining walls, made out of old concrete highway barriers, which allow the space to be sunken and trap all the cool air rushing out of the Test Buildings. Let’s get into it!

Mock it up!

To test the structural rigidity, building method, and pattern of the varied in size concrete blocks, the students landed on tying the blocks into the packed earth behind the wall by placing pieces of expanded metal mesh between the block courses. The blocks are dry-stacked, using only their weight and the mesh to stay in place.

The expanded metal mesh makes the wall sturdier, but also allows the students to slip the straps theyre using to move the blocks out after placement without untying the straps from the Bobcat forks.

The students originally planned on using concrete blocks as the benches, but they could not find enough reclaimed materials. The solution? Insert flat steel between the concrete block courses which can hold a lightweight material for sitting. The final material is still up for grabs, but for the mock-up, the team used leftover oak from the woodshop. After nailing down the building process of the retaining wall and bench, the students made sure they had each block and its future location documented. Unfortunately, to complete the design the students needed five more 4′ 3″ X 10″ x 10″ concrete blocks. Good thing they’re pros at a concrete pour!

Diagram of all block placement

Prep it up!

To prepare for building the retaining wall, the students dug trenches for small footings. These concrete footings will prevent the wall from settling and becoming unstable.

After pouring the footings, it was time to create formworks for the needed concrete blocks. These were constructed from extra lumber, ZIP sheathing, and rebar. The rebar, leftover from the Test Building foundations, was crafted into cages and hung from the formworks.

With all this prep going on, the research team was also fine tuning their strategy for evaluating airflow in the Test Box small-scale experiments. They are currently working on revising an article for publication which details the results of these experiments and the potential for internal thermal mass design. In particular, Cory, along with Jeff and collaborator Remy Fortin, have spent months nailing down the proper equations for the airflow taking into consideration friction. Thanks to Russian physicist, Idelchik, he finally found an equation which matches the parameters of the TMBV experiments.

Meanwhile, Rowe and Livia revisited metal working, welding angles for the steel bench supports, and cutting metal mesh.

Put it up!

At long last, the retaining commenced! Something different about the actual wall and the mock-up wall is the addition of gravel backfill and landscape fabric. The landscape fabric and gravel cover the column bracings and drain, which runs behind the wall, to prevent corrosion and blockage from the hardy Hale County clay. However, the metal mesh than has to pierce through the landscape fabric so it can be buried in the earth behind. Hot take: expanded metal mesh and landscape fabric is the worse material combination ever.

To let out some steam on a very steamy day, they brought out the concrete saw and sledge hammers. The team needed to shorten just one 8′ x 8″ x 8″ by about 2′. Cory and Jeff showed the mailability of reclaimed cementitious materials.

Three courses up and the TMBV team could not be happier with the result! The pattern and the finger joinery at the shifting walls is just what they wanted. Best of all, she’s quite sturdy. The team will keep you updated on the progress of the wall so, as always, stay tuned!

At long last; a mock-up, a Pig Roast & 4 master’s degrees!

Live from inside the mock-up that spanned seasons, it’s the Thermal Mass and Buoyancy Ventilation Research Project team! You may remember the mention and drawings of a mock-up back in January. Many things interrupted steady work on this mock-up including breaking ground, pouring foundations, steel design, steel fabrication, writing papers, installing drainage, designing the cooling porch, and testing concrete panel joinery types. However, after all this time, the mock-up is complete! In the two weeks before Pig Roast and graduation from the master’s program, the TMBV student team not only hoisted the test building columns and submitted a paper detailing their experiments, they also completed two mock-ups. That’s right, two–we’ve got a bonus!

Faux SIPs and Small Columns

Axon and Axon section drawings of the pod mock ups

This mock-up set out to test the ventilated roofing and cladding system while also allowing practice for some of the atypical waterproofing details caused by the chimneys. All elements of the mock-up are at full scale, however, these elements are taken from different sections of the Test Buildings and condensed. Therefore the real Test Buildings are not proportionally larger than the mock-up. Another disclaimer; the team only built one mock-up because the two Test Buildings are exactly mirrored.

The team first assembled wall, roof, floor, and chimney stud formed panels with exterior OSB sheathing on both sides. These acted as stand-in Structurally Insulated Panels (SIPs) which make up the enclosure, structure, and insulation of the Test Buildings. Next, they assembled these faux SIPs atop three shortened columns which have the same thickness and base plates as the Test Building columns.

Groovin’ and Waterproofin’

Next up–keep it dry with tar paper and roofing. Tar paper is a heavy-duty construction paper made with asphalt which repels water. The TMBV team wrapped the entire structure in tar paper in a shingling pattern to create a protective layer. After this, the team started roofing.

To minimize heat gain the roofing material is a light-colored, reflective 3/4″ corrugated metal. The metal is attached atop batons which run in parallel with the slope of the roof. This allows the roof to vent heat at the highest point of the structure. If there is one thing this team has learned in two years–hot air rises.

The team installed the flashing along with the roofing. Flashing is a thin piece of impervious material installed to prevent the passage of water into a structure from a joint or as part of a weather-resistant barrier system. The TMBV test buildings use galvanized aluminum as flashing. A large tray prevents water from slipping under the metal roofing while T-shape pieces seal the edges and create the corners.

Finishing Touches

A mini-door frame was fabricated by Brad Schmidt of Superior Metal Works LLC in Newbern, AL. He will also be fabricating the full-size door frames. This was the bit of steel the TMBV team left to a professional–boy does he do nice work! The team painted the door frame with galvanizing paint, as they did the mock-up columns, to see how all the colors of the steel, roofing, flashing, and cladding work together. The door frame installation couldn’t have gone smoother!

Last, but certainly not least, the cypress cladding. 3/4″ 1″x 6″ and 1″ x 8″ cypress boards were sanded and sealed with Kabotz wood bleach. Spaced at 1/4″ the boards created an open joint cladding system, which like the roof, allows for air circulation behind the cladding. Cladding the chimneys and the underside, which will be the cooling porch ceiling, was the trickiest part. Doing the mock-up, however, teaches the students tips and tricks for doing the real thing.

Fin!

Not much more to say, just look at that mock-up!

cmpleted mock-up with cladding and roof
Enscape rendering of Test buildings
How’s it look compared to the real thing?

Suprise: Mini-Wall!

The team also completed ANOTHER concrete wall mock-up testing a shiplap joint in between the thermal mass panels. This wall is a proportionally smaller version allowing the team to visualize the pattern on the wall as well as the screw spacing. The shiplap joint, from both a constructability and scientific validity standpoint, is a crowd favorite. Not to mention that craft and beauty…

Roasting in the Sun

On a bright, early, shiny Tuesday all the Rural Studio 2021 Spring Semester student, faculty, and staff enjoyed an in-house Pig Roast. This included an opening ceremony at the beautiful Horseshoe Courtyard, presentations from each team, a ribbon cutting ceremony at Ophelia’s Home, and lots of good food.

After a BBQ lunch, the TMBV team sprang something else heavy on the audience… their project! They had a wonderful discussion with the only outsiders at the celebration; Architects Roy Duvall, of Duvall-Decker in Jackson, MS, and John Forney. It was wonderful to show off all the hard work the students have accomplished since October 2019. From experimentation and coding data to SIPs detailing and steel fabrication these students have continually jumped into waters unknown.

Overall, Pig Roast was wonderful, but the work was not over. Pre-Roast the team installed their columns and finished their mock-ups. Post-Roast they had to complete a paper detailing their TMBV experiments and results for an international building science conference. They worked tightly with Salmaan Craig for the rest of the week. Because, of course, the paper was due that Friday and graduation was also that Friday.

Congrats Grads!

This team just couldn’t function without the variation of personalities and skillsets. No two are alike, and sometimes it’s hard, but they couldn’t be more thankful for ending up on this wild ride together. 4 hours before the paper was due, Cory and Livia scooted to Auburn for graduation. Jeff and Rowe continued working with Salmaan, up until the deadline, for which the other two are eternally grateful. Jeff and Rowe were at graduation in Livia and Cory’s hearts illustrated below. Don’t worry. the whole gang will celebrate together with a classic Cory cook-out. Stay Tuned for the impending construction of the TMBV Test Buildings!

Columns are up–so there’s no going back!

Live from a fully assembled Test Building structure, it’s the Thermal Mass and Buoyancy Ventilation Research Project team! After welding the structural steel columns that support Newbern’s newest skyscrapers, it was time for the team to put them to action. As usual there is a lot of prep work that goes into any big dance here at Rural Studio. Let’s get into it!

Prepare the slabs!

First, the team re-pulled all their batter board strings and double-checked their placement and relationships to one another. The team used these strings to find the locations of the column base plates and bracket to slab connections. Next, they used templates to mark with spray paint the connection locations. More specifically, these templates helped mark where holes needed to be drilled for the threaded rods to be epoxied into the slab.

After the slab was properly marked using the templates, the team hammer drilled the connection locations. To ensure the holes were properly 9″ deep, all the extra dust and debris created when drilling was blasted out using the air compressor. With clean holes, the team proceeded to pump epoxy in then place the threaded rods. The epoxy binds the threaded rod and concrete slab together to serve as the connection from columns and bracing to the foundation.

Next, the team test fit all their bracing connections. This gave them the idea to test fit the base plate of every single column. To do this Jeff made a template of the base plate of each of the 8 columns and slipped them over the epoxied rods. While the epoxy was still drying the team hammered any rods that needed to be nudged to fit the template of the column baseplate.

Bring out your columns!

Finally! From welding to galvanizing to transporting, this team is ready to see these columns stand on their own!

In order to place the columns, Rowe hoisted them using the Bobcat and its crane attachment. Livia and Steve guided Rowe and walked the columns to place. Once the holes in the base plate aligned with the epoxied rods sticking out of the slab, Rowe lowered the column into place. Jeff and Cory then secured and leveled the columns and attached the bracing.

All the long hours of planning, drawing, and calculating in Red Barn paid off as these babies went up in under an hour! Next up the team leveled, plumbed, and corrected all the distances between the columns. Its important the columns are upright and in the right place so the structure in the SIP floor aligns.

Complete!
Standing tall!
Sitting tall!

In the following days the team grouted the columns bases and bracing to foundation collections. This adds another layer of security into the structure. Stay tuned for the SIPs spaceships landing atop these 8 sturdy columns!

The Final Forge

Live from Turnipseed International, it’s the Thermal Mass and Buoyancy Ventilation Research Project! The students with the help of Flo, Luis, and Javier, and the guidance of Jim Turnipseed finished the steel fabrication for the TMBV Test Buildings. In just two weeks, the whole crew built the structural columns and bracing, the stair stringers, the elevated walkway, and all the handrails.

The student team cannot thank Jim Turnipseed enough for his generosity in donating all the material, space, and time to complete the steelwork. Also, lest we forget, the student team would have been lost without the world’s greatest metalworking guides: Flo, Luis, and Javier. The TMBV team will never forget their time at the shop or the remarkable people who made it all happen!

Column Completion

Column weld specifications

With the bracing attachment tabs welded onto the columns, the next step was attaching the top and bottom plates. Most importantly, these plates serve as the connection points from the column to the building and to the ground. After drilling the holes for the anchor bolt and threaded rod connections in the plates, the team built a jig that helped place the columns in the center of the plates.

The team tack welded 8 points on the column to plate connection after centering and clamping them. This secures the plates to column enough so that they can be rotated for the permanent welds. Because the columns hold up the entire buildings, the team triple welded the plates to the columns. They ain’t goin’ nowhere! All 8 columns, 4 per Test Building, were moved out of the shop when complete.

Stairway to Heaven

Overall stair axon with tread support detail

Next up were the stair stringers. Unexpectedly, these babies turned out to be the most complex structure of the bunch. The stringers are composed of 6″ x 3.5″ steel angles. The graduate students had to cut this angle precisely so that the bottom sits flush on the ground and the top meets flat against the 5″ x 5″ steel angle of the elevated walkway. Cap plates, with drilled connection holes, attach to angled cuts so that the stair can be bolted in place.

Each stringer has seven 1.5″ steel angles welded on the inside face, acting as support for the stair treads. The placement of the tread supports needed to be perfectly mirrored between both stringers to avoid a catawampus stair experience. Therefore, the stair tread placement for both stringers was laid out and checked before any welding began. Then welding began!

Tread and handrail placement specification

After welding the treads, it was time for the students to begin the stair handrail. The height of this handrail from the stair stringer is very important as it aligns with the center bar of the walkway handrail. The students rigged yet another jig to ensure the handrails were built as drawn.

The handrails are composed of 1″ tube steel. Therefore, on the open bottoms of the handrails, a cap plate was welded. All welds on the handrails were ground to perfection, enjoy the details below!

And, somehow, the stair handrails did not match up perfectly with the drawings. No big deal though, the graduate students took to their drawings and adjusted the height of the walkway handrail mid bar. Next, the stair handrails needed to be attached to the stringers. This was the most straightforward weld of the stringer, once the placement of the handrails was mirrored on each stringer. The team finished the stringers after a lot of mental math and problem-solving!

Wicked Walkway

Overall walkway axon

Now on to the walkway! The elevated walkway frame which hangs in between the Test Buildings is created out of 5″ x 5″ steel angle. The cut metal grate pieces sit on top of the frame to create the walking surface. The side of the frame will be attached to the buildings with lag screws and therefore needed many holes drilled into it. First, the graduate students cut the angles into four pieces which were to be welded into the walkway frame. Before assembling the frame they drilled the holes for the lag screw connections.

Frame cut pieces and assembly specification

After hole drilling, the team temporarily assembled the frame using lots of clamps. This allowed them to make sure the frame was square before welding. To weld the four pieces together the frame had to be rotated using a crane, all the students, and their teachers. Like the columns, the frame was tacked and then triple welded to fill all gaps and guarantee a strong connection. Below are snapshots of the frame being welded while being held vertically by the crane.

Howdy Handrails

Handrail specifications

Each of the four handrails, which guard the elevated walkway, is slightly different from one another. Of course, they are,… it’s Rural Studio! However, the team created a jig that moved to accommodate the different lengths of handrails but kept the top and center bar locations in place. This way all four handrails were made to the same heights. Having practiced with the stair handrails, the team flew through these welds. The handrails also have end caps to seal the bottom of the square tube.

Before welding, the square tube was cut with 45-degree angles so that the handrails have nice, mitered connections. After welding, the team ground all the welds. Javier and Flo doubled checked all their welds were full and if they weren’t, it was back to welding. With the handrails completed, it was time for a very different task. Moving all the steel onto the trailer.

Load it up!

On the team’s last day at the Turnipseed International, Rowe drove the student truck and 18′ trailer up from Newbern. With lots of help from Flo on the forklift, the steel was loaded into the trailer so it could be driven to the galvanizer. Galvanizing the steel is a process in which a protective zinc coating is applied to prevent rusting. The team and the crew at Turnipseed International parted ways with plans to have a barbeque in celebration of their work sometime soon!

Load it down!

Finally, the steel parts were retrieved from the galvanizer in Birmingham and brought back to rest under the Fabrication Pavilion. The Bobcat was used to remove each column from the trailer as well as the stair stringers and walkway frame.

With all the steel bits and bobbles waiting patiently under the roof of the Pavillion, the team is preparing the raising of the columns. The columns, with bracings, must go up before the SIP panels arrive so they can be attached on top. after the steel walkway and stringer will be nestled between the SIP shells of the Test Buildings. Stay tuned to see how the crazy kids get it all done!

March Metal Madness

Live from behind welding masks and safety gear, it’s the Thermal Mass and Buoyancy Ventilation Research Project Team!

Jeff watching Rowe weld

First, the team is mega grateful for the donation of material, work space, time and patience from Jim Turnipseed, head of Turnipseed International. He’s invited the graduate students to fabricate the steel for the stair, walkway, door frame, and most importantly structural columns and bracing for the TMBV Test Buildings at his metal shop in Columbiana, AL. Turnipseed International employees Flo and Luis are teaching the team how to weld, cut, and drill steel. They, as well as Javier, have been keeping the students safe and teaching them a ton! Thank you to Jim, Flo, Luis, Javier and everyone at the Turnipseed International for their guidance and generosity!

Practice makes… not so bad!

To start out their first week at the shop, the team practiced welding. They salvaged metal scraps and ground the surfaces and edges to help the welds bind.

Flo taught them how to work the MIG (Metal Inert Gas) welding machine safely. MIG is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal, which heats the workpiece metal, causing them to fuse.

After the team got the general motion of welding down, they began practicing more specific welds. This included welding perpendicular steel pieces, steel tube to plate and fusing square metal tube cut at 45-degree angles. These welds are similar to those on the walkway, stairs, columns, and handrails. Seen above is their pile of practice. At this point, there is no clear welding champion…

Grateful for Grate!

Next, the students knocked out the metal grating for the stairs and walkway which connects the Test Buildings to the ground and each other.

The students marked out the 3’ x 3’ 6” sections on the 20’ long 1” deep metal grating. Then they used the infant-sized angle grinder to break down the price where marked. The team got all the metal grating cut in one day!

Column Connections

In order to fabricate the steel columns and bracings which support the Test Buildings, the team had to prep all the pieces and parts. This meant drilling just under 100 holes for bolt connections in the steel plate and angle which make up the ground connections, bracing, and column base and top plates. The team was also deemed ready to weld the bracing ground connections seen above.

Next, the team beveled the column ends with a grinder to help them fuse to the top and bottom plates. They also marked the columns where the bracing connections were to be welded on.

In order to weld the bracing connections on plumb and level, the team rigged up a jig. They put their newly acquired welding skill to the test to make a stencil which held the columns and plate in place as they weld. They welded all the column connectors and will be moving on to top and base plates next!

students in the corner of Turnipseed international metal working shop

Above is the Thermal Mass and Buoyancy Ventilation teams’ home away from home. Tucked into the corner of the shop they have plenty of room and help from the crew to crank out the rest of their steel work. Thanks again Turnipseed International, and as always stay tuned!