Thermal Mass Test Buildings

Bit by bit, day by day

Everything is officially clad! The plywood is cut! The benches are designed! The Cooling Porch is secured! The wiring is installed! The door is installed!

Rowe and Jeff are ticking big items off the Thermal Mass and Buoyancy Ventilation Research Project checklist. Let’s take a look at what the graduate research team has completed in the last month.

Clad

The Cooling Porch ceiling and Bottom Chimneys were clad last as they did not need the articulating man lift to reach. Now that the entire Test Building is clad with bleach-stained cypress, their form reads less like floating boxes and more like floating funnels. While the main function of the chimneys is to increase overall stack height and therefore air velocity within the system, they also signal movement to onlookers. Two wood-clad heat silos at your service!

Cut

Another TMBV jig on the books, this one helps break down large pieces of plywood with precise cuts. Jeff and Rowe designed and built the jig to make all the cuts necessary for creating the plywood thermal mass panels. Like the concrete panels, the plywood conforms to the slanted ceiling of the Test Building. There is also substantially more plywood panels as they cover the walls, floor, and ceiling of the interior.

Secured

Next up, the Cooling Porch finishing touches. Steel plates for future benches were installed in the construction of the Cooling Porch walls. However, the bench material was undecided. The team chose to use the same metal grate used on the stairs and walkway for these breezy benches. Over the next couple of weeks, the benches will be installed and reinforced with a bracket.

Last up for the Cooling Porch, a little tripping hazard prevention. The top course of the Cooling Porch walls were dry-stacked but untethered to the ground. To keep the course in place, the team used Tap Con masonry screws and small metal brackets to link the top course with the rest of the wall.

Powered

As future dwellings and experiments, the Test Buildings need power for people and sensors. The buildings are wired through chases in the SIP, accessible from floor outlets to keep the walls clear.

Last on our list of tasks completed is the installation of the doors! The test fit showed a bit more blocking needed, but the end result looks great!

Two Buildings in 10 Hours and 45 Minutes

Live from inside the TMBV Test Buildings, it’s the Thermal Mass and Buoyancy Ventilation Research team! This week the team assembled the structural and insulative envelopes of the Test Building in record time. Instead of traditional timber framing, Structural Insulated Panels (SIP) create the Test Buildings structure. After installing the SIP floors, the students assembled the remaining panels into walls, ceilings, and chimneys. This allowed for each structural plane to be craned into place. Just like a giant Leggo set! The panels were adjusted by two students in an articulating man lift and secured in place using special SIP screws. The joints where walls, floors, and ceiling met were made water and airtight with SIP sealant. In under 11 hours total, all eight walls, two ceilings, and four chimneys came together to create two sturdy, insulated shells. In the coming month, the team will weather-proof the buildings in order to begin installing the thermal mass interiors.

A little bit of Prep!

Building One: 6 Hours

Building Two: 4 hours and 45 minutes

With both buildings assembled, the Thermal Mass and Buoyancy Ventilation Research team is drinking in the rewards of their hard work. This construction method takes a lot of prefabrication and intricate planning to go so smoothly. The team loves the relations of the buildings to each other, to the Cooling Porch, and to the Morrisette Campus. They will be keeping up the momentum so make sure to stay tuned!