research

Cladding, Concrete, Continuing

The Thermal Mass and Buoyancy Ventilation Team’s days of pouring concrete and manning the man lift are over. All of the internal thermal mass concrete panels have been poured, cured, and installed in the Concrete Test Building. Another milestone hit is the completion of the exterior cladding (minus the Cooling Porch ceiling). The team waved goodbye to both the articulating man lift, generously donated to the project by Sunbelt Rentals, and to team member Livia. She journeyed to Austin, TX, to work for Rural Studio Alum Lucy Begg and Robert Gay at their firm, Thoughtbarn. Good luck Liv!

Let’s check out the progress!

Cladding Completion

The team met their goal of finishing all cladding which required the articulating man lift by the end of October. The bleach-stained cypress covers all exterior surfaces including the Chimneys. The team left one side of the cladding longer than necessary. Then they came back with a skill saw and a guide to give one clean cut. This ensured that all corner reveals were exactly 1/2 inch wide.

Interior Optimized

Over 70 1-1/8 inch concrete panels now line the walls of the Concrete Test Building. The team crafted formwork and processes for pouring, transporting, and installing each panel. Behind the panels is 1/2 inch rigid insulation which creates a thermal break from the OSB sheathing during the testing phase. For roughly the next year, the Test Buildings will be unoccupied as temperature and ventilation measurements are continuously recorded. Afterward, the Test Buildings will be prepared for either more experiments or occupation by 3rd-year students living on Morrisette Campus. Check out the nearly complete Concrete Test Building below! Only some buffing and shining to go!

Bonus!

Also in the works as of late is a vent cap for the bottom chimney opening within the Test Buildings. This cap seals the lower ventilation opening shut during winter occupation. Seen below is Rowe welding a frame for the hatch!

Don’t miss Jeff and Rowe’s wonderful Halloween Review costumes. Jeff as his prized Milwaulkee leaf blower and Rowe, a leaf, one of many victims. Keep checking back in as the Test Buildings near completion!

Grounded and Floored

Live from atop multiple completed surfaces, it’s the Thermal Mass & Buoyancy Ventilation Research team! They’ve been busy staying grounded and flooring onlookers! The team has nearly completed the Cooling Porch and fully installed the Test Buildings floor and walkway. Let’s get right into it!

Making a Mosaic

After properly stacking the Cooling Porch retaining walls, the TMBV team filled the enclosure with 4″ of gravel. This gravel covers the drain and also acts as a leveling surface for the concrete sidewalk scraps. If it hasn’t been mentioned yet, the final ground surface in the Cooling Porch will be a mosaic of reclaimed concrete sidewalk scraps. These scraps come from a newly replaced walkway in Newbern and will act almost as flagstones.

In order to create this mosaic, the crew labeled and documented the exact size of every piece of sidewalk scrap. They took photographs of the each sidewalk piece with a ruler on top. Next, they sized each one proportionally in the 3D modeling software, Sketchup, where they placed pieces within the cooling porch walls. Afterwards, out on-site, the team laid out all of the sidewalk scraps and prepared to place them in the Cooling Porch.

Flying Floors

Finally, one of the three big lifts to erect the SIPs structures is complete! Before Shane of Sweetwater Construction LLC could lift the Test Building floors and walkway into place, the team had to assemble the SIPs. Each floor is comprised of three SIPs panels, two embedded LVL (laminated veneer lumber) beams, and 2′ x 12′ lumber to cap the ends. The embedded beams allow for the cantilever from the 4 columns.

Underneath the Fabrication Pavillion, the team lifted the SIPs atop the gooseneck trailer where they assembled the different parts and pieces. The embedded beams are coated with SIP seal which ensures a waterproof joint. They are also nailed to the panels. The 2′ x 12′ caps have attached joist hangers to accept the LVL beams.

With both floors complete, it was time to lift! Shane with the crane pulled the gooseneck trailer down AL Highway 61 to the other side of Morrisette Campus. On-site, in place, and ready to lift, take a look at the process below!

The whole process took only 4 hours, but many, many months of prep work and design. Stay tuned to see the TMBV test building go up just a fast and hopefully just as smooth!

The Great Walls of Newbern

Live from within the newly completed Cooling Porch retaining walls, it’s the Thermal Mass & Buoyancy Ventilation Research project team! We’ll take you through the evolution of both north and south wall and all the earthwork in between. If you stay tuned ’till the end you’ll see Cory’s latest artistic venture; a short film titled, “Le Grevier.”

Backfilling and adding the final course to the north wall

North Wall: Complete!

After laying and leveling the dry-stacked concrete highway barriers, the team backfilled gravel and earth against the wall. Directly behind the walls are drains that are wrapped in landscape fabric and covered with gravel. This protects the drains from getting clogged with Hale County Clay. Behind the gravel, the team piled and compacted earth. They are reusing the dirt excavated for the building foundations. This process repeats for each course, refilling the initial dig. The Cooling Porch is still a hole in the ground, but it’s becoming a far more precise hole in the ground.

Tamping over damp dirt and clay is a struggle

Voila! The joints, pattern, color, and textures of the north wall turned out fantastic. The team was astonished by the uniformity of the wall and the blending of the different blocks despite using reclaimed materials. On to the south wall!

South Wall: Complete!

Beginning the 1st course of the south wall and taking down the batter boards!

The process of constructing the south wall was essentially the same as the north wall. Small concrete footings were poured wherever the retaining wall went off the building foundations. The team also completed the installation of the drainage. The space began to form right in front of their eyes!

Fully Blocked

The team feels the space looks exactly as they drew it–which is both slightly surprising and super satisfying. All the measuring, drafting, and double-checking produced a beautiful pit. And, bonus, the reuse of materials is a surefire way to build with the environment in mind and luckily these concrete highway barriers turned out to be the perfect durable, stackable material. The backfill and dug-out stairs makes getting around site a whole lot easier. It’s all coming together!

Thanks for following the progress of the soon-to-be chilly demonstration space! Stay tuned for SIPs construction and laying the ground surface in the Cooling Porch. Now, for your enjoyment, follow the life of a scoop of gravel in Cory’s feature film, “Le Grevier.”

Le Gravier

Le Grevier: Directed by Cory Subasic starring Wheelbarrow, Shovel, Bobcat, and Gravel with a special appearance by Livia Barrett as “Gravel Girl.”

Structural Delivery: the SIPs have arrived!

Live from behind one of the largest deliveries in Rural Studio history, it’s the Thermal Mass and Buoyancy Ventilation (TMBV) Research project team. For months the research team has been working closely with Insulspan, a company that manufactures custom Structural Insulated Panels (SIPs). Together they finalized the design of the SIPs which will make up the entirety of the TMBV Test Building structure and enclosure—while providing experimentally valid insulation. This week, the team received the SIPs and organized them under Rural Studio’s Fabrication Pavilion to prepare for construction. In a couple of weeks’ time the panels will be assembled atop the steel columns like a giant 3D puzzle.

SIP, SIP, Hooray!

SIPs Assembly

The TMBV team originally sent the drawings seen below to Insulspan; breaking up the Test Buildings’ design into panelized pieces. The team will assemble all the pieces that make up each wall, the floor, and the ceiling. Then, Shane of Stillwater Machine LLC will crane the structure into place.

Thankfully, that same Shane with a crane was in the neighborhood when an 18-wheeler full of SIPs showed up a day earlier than expected. To get the panels off the truck Shane, his two young assistants, the TMBV team, Steve Long, and Andrew Freear got to work screwing in blocking and threading the straps. The team and helpers attached small lumber pieces (blocking) to prevent damage to the SIPs as the straps cradled the panels and lifted them off the truck.

How to Move a Building; in Pieces!

This delivery happened to take place right before a classic summer deluge. So, the SIPs were tarped and left outside the Fabrication Pavilion for the weekend. After the passing of the storm, it was time for the team to figure out how to get the panels under the Fabrication Pavilion for better protection. The Fabrication Pavilion roof is actually made of Insulspan SIPs as well. SIPs covering SIPs!

To move the panels, the team attached the lifting brackets provided by Insulspan. Then, to get the largest panels under the Fab Pav, the team used straps and the Bobcat custom, “Bob Crane.”

As the team transported the panels they also organized them. The vertical stacks group the panels by building, remember there are two, and by structure i.e. floor, ceiling, wall, or chimney. It is far easier to find the panel you need and access it when the panels are stacked this way. Also, the order of assembly was taken into consideration when sorting the panels. The floors will be assembled first on the 24′ trailer with the gooseneck attachment and then transported to the site. Next, the team will do the same thing for walls and ceilings. As far as moving the panels around under the pavilion, the students managed to do a lot by hand. With the help of an old, sturdy cart, they found in a storage barn they got everything into place and braced up.

In order to construct the floors, walls, and ceilings on the gooseneck trailer, the team had to extend the platform using TJIs donated to the Studio long ago. TJI stands for Trus Joist® TJI® Joists, they are essentially an I-beam manufactured out of engineered lumber. The TJI platform also allows the student to get underneath the panels during assembly.

With a whole lot of willpower and cart strategy, the Thermal Mass & Buoyancy Ventilation Research Team shuffled all the SIPs into place. Stay tuned for the Test Building assembly—those panels will be going up in the sky!

Columns are up–so there’s no going back!

Live from a fully assembled Test Building structure, it’s the Thermal Mass and Buoyancy Ventilation Research Project team! After welding the structural steel columns that support Newbern’s newest skyscrapers, it was time for the team to put them to action. As usual there is a lot of prep work that goes into any big dance here at Rural Studio. Let’s get into it!

Prepare the slabs!

First, the team re-pulled all their batter board strings and double-checked their placement and relationships to one another. The team used these strings to find the locations of the column base plates and bracket to slab connections. Next, they used templates to mark with spray paint the connection locations. More specifically, these templates helped mark where holes needed to be drilled for the threaded rods to be epoxied into the slab.

After the slab was properly marked using the templates, the team hammer drilled the connection locations. To ensure the holes were properly 9″ deep, all the extra dust and debris created when drilling was blasted out using the air compressor. With clean holes, the team proceeded to pump epoxy in then place the threaded rods. The epoxy binds the threaded rod and concrete slab together to serve as the connection from columns and bracing to the foundation.

Next, the team test fit all their bracing connections. This gave them the idea to test fit the base plate of every single column. To do this Jeff made a template of the base plate of each of the 8 columns and slipped them over the epoxied rods. While the epoxy was still drying the team hammered any rods that needed to be nudged to fit the template of the column baseplate.

Bring out your columns!

Finally! From welding to galvanizing to transporting, this team is ready to see these columns stand on their own!

In order to place the columns, Rowe hoisted them using the Bobcat and its crane attachment. Livia and Steve guided Rowe and walked the columns to place. Once the holes in the base plate aligned with the epoxied rods sticking out of the slab, Rowe lowered the column into place. Jeff and Cory then secured and leveled the columns and attached the bracing.

All the long hours of planning, drawing, and calculating in Red Barn paid off as these babies went up in under an hour! Next up the team leveled, plumbed, and corrected all the distances between the columns. Its important the columns are upright and in the right place so the structure in the SIP floor aligns.

Complete!
Standing tall!
Sitting tall!

In the following days the team grouted the columns bases and bracing to foundation collections. This adds another layer of security into the structure. Stay tuned for the SIPs spaceships landing atop these 8 sturdy columns!