research project

March Metal Madness

Live from behind welding masks and safety gear, it’s the Thermal Mass and Buoyancy Ventilation Research Project Team!

Jeff watching Rowe weld

First, the team is mega grateful for the donation of material, work space, time and patience from Jim Turnipseed, head of Turnipseed International. He’s invited the graduate students to fabricate the steel for the stair, walkway, door frame, and most importantly structural columns and bracing for the TMBV Test Buildings at his metal shop in Columbiana, AL. Turnipseed International employees Flo and Luis are teaching the team how to weld, cut, and drill steel. They, as well as Javier, have been keeping the students safe and teaching them a ton! Thank you to Jim, Flo, Luis, Javier and everyone at the Turnipseed International for their guidance and generosity!

Practice makes… not so bad!

To start out their first week at the shop, the team practiced welding. They salvaged metal scraps and ground the surfaces and edges to help the welds bind.

Flo taught them how to work the MIG (Metal Inert Gas) welding machine safely. MIG is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal, which heats the workpiece metal, causing them to fuse.

After the team got the general motion of welding down, they began practicing more specific welds. This included welding perpendicular steel pieces, steel tube to plate and fusing square metal tube cut at 45-degree angles. These welds are similar to those on the walkway, stairs, columns, and handrails. Seen above is their pile of practice. At this point, there is no clear welding champion…

Grateful for Grate!

Next, the students knocked out the metal grating for the stairs and walkway which connects the Test Buildings to the ground and each other.

The students marked out the 3’ x 3’ 6” sections on the 20’ long 1” deep metal grating. Then they used the infant-sized angle grinder to break down the price where marked. The team got all the metal grating cut in one day!

Column Connections

In order to fabricate the steel columns and bracings which support the Test Buildings, the team had to prep all the pieces and parts. This meant drilling just under 100 holes for bolt connections in the steel plate and angle which make up the ground connections, bracing, and column base and top plates. The team was also deemed ready to weld the bracing ground connections seen above.

Next, the team beveled the column ends with a grinder to help them fuse to the top and bottom plates. They also marked the columns where the bracing connections were to be welded on.

In order to weld the bracing connections on plumb and level, the team rigged up a jig. They put their newly acquired welding skill to the test to make a stencil which held the columns and plate in place as they weld. They welded all the column connectors and will be moving on to top and base plates next!

students in the corner of Turnipseed international metal working shop

Above is the Thermal Mass and Buoyancy Ventilation teams’ home away from home. Tucked into the corner of the shop they have plenty of room and help from the crew to crank out the rest of their steel work. Thanks again Turnipseed International, and as always stay tuned!

Those pour, pour foundations!

Live from on top freshly poured foundations, it’s the Thermal Mass and Buoyancy Ventilation Research Project Team! This week the students, with a little help from their friends, completed their Test Building foundations. This included installing rebar and pouring concrete. Let’s get straight to those action shots, huh?

Rebar Retreat

First, Livia’s all time favorite activity, the cutting of the rebar. The team cut sections of rebar for the bottom rebar mat, the top rebar mat, and the vertical pieces that hold the two together.

Next, it’s install time. Comprised of number 5 rebar, the bottom mat is a regular grid. The north-south and east-west pieces are joined with rebar ties. The vertical pieces were hammered into the ground at a consistent elevation. This elevation is 1” lower than the future slab surface. These vertical pieces support the top mat, comprised of number 4 rebar. The top mat only runs between future column locations.

With the rebar installation completed, the TMBV team prepared for the concrete pour. Rowe built bridges to span the foundation excavation holes. The bridges will be used to shovel and trowel the concrete in the middle of the foundations. Jeff helped test bridge durability. Livia prepped her waterproof suit, she’s quite messy and will need to be hosed down with the shovels at the end of the day. Cory practiced his elevation calling as the master of the transit.

The Big Pour

If you find yourself wondering, why do these cute, little buildings need such an intricate foundation? Well, while the volumetric form of the Test Buildings appear small, they are actually quite monumental. Reaching 25’ tall and lifted 7′ 6″ off the ground, the test buildings experience substantial overturning forces which are counteracted by the foundations.

“We get by with a little help from our friends!”

With shovel-armed 5th-years, Steve long calling shots, and Andrew Freear on the chute, the pouring began. Everyone helped move the concrete around the excavation hole until it was about level with the grade pins. Grade pins are orange-painted, vertical pieces that are set to 1/4″ under the slab surface height. When the concrete reaches the grade pins evenly, Rowe and Cory began taking elevation measurements.

In order to deem the elevation, “Good!” the students meticulously move and smooth the concrete. Next, troweling begins once several spot measurements meet the elevation mark. While Livia and Jeff began finishing the surface of the west foundation, the others moved on to the east foundation. Pour, level, rinse, repeat! It is actually a good idea to rinse your shovel in between uses it isn’t ruined by the concrete…

Like most concrete pours, the fashionable ones at least, the TMBV ordered 10% extra concrete. However, the concrete suppliers do not typically take back the extra if it isn’t used. Because all that concrete has got to go somewhere, the TMBV team built formworks that match the size of the concrete scrap they already have. Therefore, they will have plentiful pieces for the design of their Cooling Porch. In the meantime, the mini-slab acts as an executive parking spot for Andrew Freear’s sky-blue Honda FIT.

The Finished Products

Completed east and west foundations
Reserved for Andrew Freear (spikes to be installed later)

Would you look at that—two beautiful foundations ready for curing. And an extra mini slab! The TMBV team could not have completed this feat without the help from the 5th-year students and faculty. The pour went smoothly with no catastrophic events! Next up, construction-wise, the team will install drainage and the steel structure. As always, thanks for stopping by and stay tuned!

f i n

Breaking News: We’re Breaking Ground!

This just in: there’s is a big hole in the Thermal Mass and Buoyancy Ventilation Research Project site!

Thanks to C & T Excavation Inc. the TMBV Test Buildings have broken ground. Local and Rural Studio excavation efficiando, Tyler, completed the initial site grading and the foundation dig. Let’s take a look at how the TMBV team prepped the site for this momentous day.

Newbern’s Newest Crater

plan view drawing showing batterboard arrangement
Plan of Batter Board layout, this drawing guided students in find the foundation limits

Before you can dig a hole, you’ve got to know where to dig! This is where the superheroes of construction, batter boards, come into play. Batter boards are quintessential for starting construction so they must be precise. To clarify, batter boards are temporary frames, set beyond the corners of planned groundwork at common elevations.

Typically, batter boards consist of two stakes driven into the ground with a horizontal member held between them. Next, once you’ve assembled and leveled the batter boards, you use construction string to “pull” layout lines. The layout lines are then secured to the batter boards. Layout lines cross the site either east to west or north to south, between batter boards, to indicate the foundation limits at their intersections. It’s important to note the elevation of the top of each batter board must match so when strings are pulled across the strings intersect.

The TMBV team pulled their first layout line west to east from the Supershed columns. From this line, all other layout lines are set. When all lines’ distances and intersections’ squareness are triple-checked, the team marked the initial grading limits on the ground with spray paint. The end result, with string crisscrossing about like laser beams, feels a bit like a scene from an action movie. Especially if you practice jumping over and rolling under the strings. But, of course, none of these very professional research graduate students took part in such conduct.

At the end of a long day pulling strings, the team marked their initial grading and detached all the layout lines from one side. The layout lines positions are marked on the batter boards so they can be put up and down as needed. Obviously, you can’t build with a bunch of strings in your way. After the initial site grading, the students re-pulled the strings which indicated the foundation limits, marked the corners, and Tyler began digging again. In about 6 hours time, Morrisette Campus had a brand new swimming pool and the TMBV team had a real project site.

Mock-up Progression

In parallel with site groundwork, the TMBV team worked across campus on their mock-up. To mimic the SIPs walls of the test buildings, the mock-up uses 2″ x 12″ stud walls. Due to the angle of the roof and the chimneys, there was much mitering to complete and even more mitering math to figure out. The team built all the stud walls and are ready to assemble. All the especially funky parallelograms you see below are the chimney pieces. With the kit of parts complete, the team awaits columns to build upon.

Cooling Porch Design

True to the design-build spirit, the team is still designing as they’ve started building. The ground plane of the cooling porch was the subject of this week’s design charrette. The team has used, concrete side-walk pieces they intend on using as pavers. However, it is not decided yet how those pavers are arranged.

The team wants to eliminate any excessive cutting of the pavers, especially exact cutting, so they ruled out a linear pattern. They are pursuing a mosaic-like pattern that minimizes concrete cuts. However, without a full inventory of all the concrete pieces, it’s difficult to produce a realistic design. Therefore, in the coming weeks, the team will be taking stock of their recyclable materials. After this, they can start laying out patterns using a steer skid loader to move concrete pieces around.

Welcome to Winter

a dirt roads lead to to silos both surround by frosted grass

As mentioned in the Thermal Mass and Buoyancy Ventilation Research Project Team’s last blog post, the chill has rolled into Hale County. There is never a shortage of beautiful scenery in these parts as proven by these frosty silos. By next post the TMBV team hopes to have another gorgeous view for you; a freshly poured foundation! Here’s hoping and thanks for tuning in!

Rural Studio and McGill University publishes the collaboration’s first research paper

The Breathing Wall Mass Timber Research Project Team, alongside collaborators and colleagues Sal Craig, Kiel Moe, David Kennedy and Rural Studio’s own Andrew Freear, have officially published their work! The original research paper, entitled “The Design of Mass Timber Panels as Heat-Exchangers (Dynamic Insulation)” was published in the Frontiers in Built Environment journal. A culmination of two years of investigation and experimentation (see the blog here for more info), the article shows how to optimize mass timber panels as heat-exchangers and suggests how to pair panels with buoyancy ventilation.

The Breathing Wall Mass Timber Team and Sal Craig; the wonderful collaboration

Why is that important? The building industry is currently responsible for roughly 40% of global greenhouse gas emissions, with a significant portion originating from the production of construction materials like concrete and steel. Mitigating this climate crisis requires a fundamental shift in what and how we build. Mass timber heat-exchangers offer a potential alternative. Mass timber products are naturally carbon sequestering, and building responsibly with timber has the potential to store carbon in the global carbon sink of new building stocks. Designing panels to be multifunctional provides the opportunity to further multiply savings by suggesting how to eliminate fossil-intensive insulation while simplifying ventilation systems. 

How the Mass Timber Breathing Wall works

Mass Timber heat exchangers aren’t the only alternative – thermal mass is another example of this ‘radical integration’ – but the Mass Breathers and Co are excited to contribute to the conversation, and hope you will too! The article and data are all in the Creative Commons (thank you to MSSI for funding the license), and research is ever ongoing!

The Breathing Wall Mass Timber Research Project Team: Jake, Fergie, Preston and Anna

Celebrating successes,

The Mass Breathers

Soundtrack: Celebration | Kool & The Gang

Getting Down to the Details Episode II: Attack of the Drawings

diagram of Test Building showing all details the team must draw

Live from behind multiple stacks of full-scale detail drawings, it’s the Thermal Mass and Buoyancy Ventilation Research Project Team! The team has continued their pursuit to draw every detail of the Test Buildings. These drawings have cemented aspects of the building such as cladding, roofing materials, and entryway design. Certainly, there is still much more to decide and conquer. Let’s check out what the team’s got so far.

Concrete Barrier Bargains

First up, a much-needed win for the TMBVRP team; they got concrete barriers! The Cooling Porch, a space for literal chilling underneath the Test Buildings, uses recycled concrete barriers as a retaining wall and seating. Road work being done on Highway 61 in Newbern revealed many of these stackable, concrete barriers just asking to be reused. The construction team doing the roadwork donated and delivered all of the extra concrete barriers straight to Morrisette Campus. However, this generous gift was not the only score for the team. Next, the team found more concrete barriers at the Greensboro Highway Department Office just 10 miles down the road. The Greensboro Highway Department has 40 more barriers and the team can have them if they can move them. Time to start the powerlifting team!

Cladding Conclusions

Meanwhile, as the team solidified the material of the Cooling Porch seating, they also came to exterior cladding conclusions. The last post touched on how the team committed to using timber for their open-joint cladding system. Now they have decided on wood species and size. The team chose Cypress in both 6″ and 8″ boards to clad the Test Buildings.Cypress is a locally available and weather-resistant cladding option.

Pod cross section showing cypress cladding system

The variation in board sizes allows for more flexibility around complex details. For example underneath the walkway, attached underneath the door, 6″ inch boards come up too short. On the other hand, 8″ boards overhang too much and interfere with the cladding on the Cooling Porch ceiling and Chimney. The mix of boards also allows for board spacing to differ slightly without drawing attention. Uniform board sizes make it easier to spot mistakes and the team is keen on hiding those from you.

A Smattering of Details

Because it would be entirely boring to describe each of these details; the TMBV team will just hit the highlights for you. First, the roofing material will be 1/4″ corrugated metal. While Rural Studio is no stranger to corrugated metal, this is a less common type. Being just 1/4″ in depth, this material has the advantages of durability and low price of normal corrugated metal, but with a more subtle profile. Below, you can see just how that ventilated roof and corrugated metal interact with the cypress clad chimneys and drip edge flashing. These were definitely some of the most complicated details due to the aerodynamic shapes of the chimneys and roof.

cut section through door showing door frame and walkway connection
full door section showing walkway connection

Next up is the door. Although the Test Buildings will be used as quasi-dorm rooms for 3rd-year students, the team does not want them appearing too residential. Just in case the polygonal shape and hovering nature of the Test Buildings don’t shout, “Experiment!” loud enough the door has got to be different too. The door acts as a punch through the SIPs wall and Internal Thermal Mass to emphasize that one is entering into an active system. This is done by highlighting the depth of the wall with a thin 13″ aluminum frame, slightly thicker than the wall. This detail was unabashedly stolen from the beloved Newbern Library project, the smart detail treasure trove.

And from the Details, a Mock-up is Born

After drawing and redrawing all those tricky details, Steve Long and Andrew Freear suggested the team practice building them before attempting them on the real deal. This is a time-old tradition at Rural Studio known as the mock-up. A mock-up is a condescended version of a building, or a small part of it, that allows students to practice and visualize construction. For example and as seen above, 20k Ann’s Home Project team built a wonderful mock-up where they tested all their cladding and roofing details to scale. The Thermal Mass and Buoyancy Ventilation Research Project team used this mock-up as inspiration when designing their own. You can take a look at the TMBVRP Test Building mock-up construction document set (CD set) below!

Axon and Axon section drawings of the pod mock ups

Every detail the team solved can be seen in the mock-up. The entire structure will end up being approximately 6′ x 6′ x 10′. The height is a bit substantial for a mock-up but practicing detailing the chimneys at full scale is very important. The team is making framed walls to the same thickness as the SIPs (Structural Insulated Panels) instead of building with SIPs for the mock-up. This will save a lot of time and money. The team finds the mock-up rather cute on paper though it won’t seem so miniature in person. They plan to start building the mock-up soon, but first, need to gather all the real materials they would use on the Test Buildings. It’s important they practice on something as close to the Test Building design as possible.

The Thermal Mass and Buoyancy Ventilation Research team is happy to be down in the weeds of detailing as their research becomes real. Thanks for Tuning in!