research project

Cladding, Concrete, Continuing

The Thermal Mass and Buoyancy Ventilation Team’s days of pouring concrete and manning the man lift are over. All of the internal thermal mass concrete panels have been poured, cured, and installed in the Concrete Test Building. Another milestone hit is the completion of the exterior cladding (minus the Cooling Porch ceiling). The team waved goodbye to both the articulating man lift, generously donated to the project by Sunbelt Rentals, and to team member Livia. She journeyed to Austin, TX, to work for Rural Studio Alum Lucy Begg and Robert Gay at their firm, Thoughtbarn. Good luck Liv!

Let’s check out the progress!

Cladding Completion

The team met their goal of finishing all cladding which required the articulating man lift by the end of October. The bleach-stained cypress covers all exterior surfaces including the Chimneys. The team left one side of the cladding longer than necessary. Then they came back with a skill saw and a guide to give one clean cut. This ensured that all corner reveals were exactly 1/2 inch wide.

Interior Optimized

Over 70 1-1/8 inch concrete panels now line the walls of the Concrete Test Building. The team crafted formwork and processes for pouring, transporting, and installing each panel. Behind the panels is 1/2 inch rigid insulation which creates a thermal break from the OSB sheathing during the testing phase. For roughly the next year, the Test Buildings will be unoccupied as temperature and ventilation measurements are continuously recorded. Afterward, the Test Buildings will be prepared for either more experiments or occupation by 3rd-year students living on Morrisette Campus. Check out the nearly complete Concrete Test Building below! Only some buffing and shining to go!

Bonus!

Also in the works as of late is a vent cap for the bottom chimney opening within the Test Buildings. This cap seals the lower ventilation opening shut during winter occupation. Seen below is Rowe welding a frame for the hatch!

Don’t miss Jeff and Rowe’s wonderful Halloween Review costumes. Jeff as his prized Milwaulkee leaf blower and Rowe, a leaf, one of many victims. Keep checking back in as the Test Buildings near completion!

Weather Proof and a Roof

Live from the Test Buildings, it’s the Thermal Mass and Buoyancy Ventilation Research Project team. After swiftly assembling the Test Buildings, the graduate team began weatherproofing. The team’s goal is to have the buildings protected from rain quickly so they can get to work on installing the thermal mass panels on the interior. The weatherproofing systems are designed to mitigate heat gain in different ways to eliminate experimental variation.

First, the team covered the buildings in shingled tar paper–a heavy-duty, waterproof construction paper. Next, the team installed battens which create space between the structure and cladding allowing for ventilation and avoiding heat gain. The roof is also ventilated and covered with highly reflective, low albedo corrugated sheet metal. This means the materiality and color of the roof are fighting solar radiation.

Lastly, the team installed the beautiful steel door frames. Turnipseed International donated the steel and Brad of Superior Metals LLC welded the frames Thanks for reading and stay tuned.

Tar Paper and Battens

Roof Battens and Flashing

Roofing Metal

Both roofs complete!

Door Frame

The Great Walls of Newbern

Live from within the newly completed Cooling Porch retaining walls, it’s the Thermal Mass & Buoyancy Ventilation Research project team! We’ll take you through the evolution of both north and south wall and all the earthwork in between. If you stay tuned ’till the end you’ll see Cory’s latest artistic venture; a short film titled, “Le Grevier.”

Backfilling and adding the final course to the north wall

North Wall: Complete!

After laying and leveling the dry-stacked concrete highway barriers, the team backfilled gravel and earth against the wall. Directly behind the walls are drains that are wrapped in landscape fabric and covered with gravel. This protects the drains from getting clogged with Hale County Clay. Behind the gravel, the team piled and compacted earth. They are reusing the dirt excavated for the building foundations. This process repeats for each course, refilling the initial dig. The Cooling Porch is still a hole in the ground, but it’s becoming a far more precise hole in the ground.

Tamping over damp dirt and clay is a struggle

Voila! The joints, pattern, color, and textures of the north wall turned out fantastic. The team was astonished by the uniformity of the wall and the blending of the different blocks despite using reclaimed materials. On to the south wall!

South Wall: Complete!

Beginning the 1st course of the south wall and taking down the batter boards!

The process of constructing the south wall was essentially the same as the north wall. Small concrete footings were poured wherever the retaining wall went off the building foundations. The team also completed the installation of the drainage. The space began to form right in front of their eyes!

Fully Blocked

The team feels the space looks exactly as they drew it–which is both slightly surprising and super satisfying. All the measuring, drafting, and double-checking produced a beautiful pit. And, bonus, the reuse of materials is a surefire way to build with the environment in mind and luckily these concrete highway barriers turned out to be the perfect durable, stackable material. The backfill and dug-out stairs makes getting around site a whole lot easier. It’s all coming together!

Thanks for following the progress of the soon-to-be chilly demonstration space! Stay tuned for SIPs construction and laying the ground surface in the Cooling Porch. Now, for your enjoyment, follow the life of a scoop of gravel in Cory’s feature film, “Le Grevier.”

Le Gravier

Le Grevier: Directed by Cory Subasic starring Wheelbarrow, Shovel, Bobcat, and Gravel with a special appearance by Livia Barrett as “Gravel Girl.”

Structural Delivery: the SIPs have arrived!

Live from behind one of the largest deliveries in Rural Studio history, it’s the Thermal Mass and Buoyancy Ventilation (TMBV) Research project team. For months the research team has been working closely with Insulspan, a company that manufactures custom Structural Insulated Panels (SIPs). Together they finalized the design of the SIPs which will make up the entirety of the TMBV Test Building structure and enclosure—while providing experimentally valid insulation. This week, the team received the SIPs and organized them under Rural Studio’s Fabrication Pavilion to prepare for construction. In a couple of weeks’ time the panels will be assembled atop the steel columns like a giant 3D puzzle.

SIP, SIP, Hooray!

SIPs Assembly

The TMBV team originally sent the drawings seen below to Insulspan; breaking up the Test Buildings’ design into panelized pieces. The team will assemble all the pieces that make up each wall, the floor, and the ceiling. Then, Shane of Stillwater Machine LLC will crane the structure into place.

Thankfully, that same Shane with a crane was in the neighborhood when an 18-wheeler full of SIPs showed up a day earlier than expected. To get the panels off the truck Shane, his two young assistants, the TMBV team, Steve Long, and Andrew Freear got to work screwing in blocking and threading the straps. The team and helpers attached small lumber pieces (blocking) to prevent damage to the SIPs as the straps cradled the panels and lifted them off the truck.

How to Move a Building; in Pieces!

This delivery happened to take place right before a classic summer deluge. So, the SIPs were tarped and left outside the Fabrication Pavilion for the weekend. After the passing of the storm, it was time for the team to figure out how to get the panels under the Fabrication Pavilion for better protection. The Fabrication Pavilion roof is actually made of Insulspan SIPs as well. SIPs covering SIPs!

To move the panels, the team attached the lifting brackets provided by Insulspan. Then, to get the largest panels under the Fab Pav, the team used straps and the Bobcat custom, “Bob Crane.”

As the team transported the panels they also organized them. The vertical stacks group the panels by building, remember there are two, and by structure i.e. floor, ceiling, wall, or chimney. It is far easier to find the panel you need and access it when the panels are stacked this way. Also, the order of assembly was taken into consideration when sorting the panels. The floors will be assembled first on the 24′ trailer with the gooseneck attachment and then transported to the site. Next, the team will do the same thing for walls and ceilings. As far as moving the panels around under the pavilion, the students managed to do a lot by hand. With the help of an old, sturdy cart, they found in a storage barn they got everything into place and braced up.

In order to construct the floors, walls, and ceilings on the gooseneck trailer, the team had to extend the platform using TJIs donated to the Studio long ago. TJI stands for Trus Joist® TJI® Joists, they are essentially an I-beam manufactured out of engineered lumber. The TJI platform also allows the student to get underneath the panels during assembly.

With a whole lot of willpower and cart strategy, the Thermal Mass & Buoyancy Ventilation Research Team shuffled all the SIPs into place. Stay tuned for the Test Building assembly—those panels will be going up in the sky!

It’s Retainin’ Men (and Livia)

Live from the Cooling Porch, it’s the Thermal Mass & Buoyancy Ventilation Research Project team! Recently, the students focused on the demonstration space beneath the Test Buildings known as the Cooling Porch. Specifically, they began constructing the retaining walls, made out of old concrete highway barriers, which allow the space to be sunken and trap all the cool air rushing out of the Test Buildings. Let’s get into it!

Mock it up!

To test the structural rigidity, building method, and pattern of the varied in size concrete blocks, the students landed on tying the blocks into the packed earth behind the wall by placing pieces of expanded metal mesh between the block courses. The blocks are dry-stacked, using only their weight and the mesh to stay in place.

The expanded metal mesh makes the wall sturdier, but also allows the students to slip the straps theyre using to move the blocks out after placement without untying the straps from the Bobcat forks.

The students originally planned on using concrete blocks as the benches, but they could not find enough reclaimed materials. The solution? Insert flat steel between the concrete block courses which can hold a lightweight material for sitting. The final material is still up for grabs, but for the mock-up, the team used leftover oak from the woodshop. After nailing down the building process of the retaining wall and bench, the students made sure they had each block and its future location documented. Unfortunately, to complete the design the students needed five more 4′ 3″ X 10″ x 10″ concrete blocks. Good thing they’re pros at a concrete pour!

Diagram of all block placement

Prep it up!

To prepare for building the retaining wall, the students dug trenches for small footings. These concrete footings will prevent the wall from settling and becoming unstable.

After pouring the footings, it was time to create formworks for the needed concrete blocks. These were constructed from extra lumber, ZIP sheathing, and rebar. The rebar, leftover from the Test Building foundations, was crafted into cages and hung from the formworks.

With all this prep going on, the research team was also fine tuning their strategy for evaluating airflow in the Test Box small-scale experiments. They are currently working on revising an article for publication which details the results of these experiments and the potential for internal thermal mass design. In particular, Cory, along with Jeff and collaborator Remy Fortin, have spent months nailing down the proper equations for the airflow taking into consideration friction. Thanks to Russian physicist, Idelchik, he finally found an equation which matches the parameters of the TMBV experiments.

Meanwhile, Rowe and Livia revisited metal working, welding angles for the steel bench supports, and cutting metal mesh.

Put it up!

At long last, the retaining commenced! Something different about the actual wall and the mock-up wall is the addition of gravel backfill and landscape fabric. The landscape fabric and gravel cover the column bracings and drain, which runs behind the wall, to prevent corrosion and blockage from the hardy Hale County clay. However, the metal mesh than has to pierce through the landscape fabric so it can be buried in the earth behind. Hot take: expanded metal mesh and landscape fabric is the worse material combination ever.

To let out some steam on a very steamy day, they brought out the concrete saw and sledge hammers. The team needed to shorten just one 8′ x 8″ x 8″ by about 2′. Cory and Jeff showed the mailability of reclaimed cementitious materials.

Three courses up and the TMBV team could not be happier with the result! The pattern and the finger joinery at the shifting walls is just what they wanted. Best of all, she’s quite sturdy. The team will keep you updated on the progress of the wall so, as always, stay tuned!