passive

Getting Down to the Details

Live from behind a stack of full-scale detail drawings, it’s the Thermal Mass and Buoyancy Ventilation Research Project Team! Lately, the team has been investigating all details inside and out. Starting out with material pallet and ending up at chimney flashing, the team is kicking it into high gear.

Cladding Material

Unsurprisingly for a project so focused on the interior systems, it was difficult to make decisions regarding cladding. Initially, as seen in previous models shown above, the team experimented with separate cladding systems for the chimneys, Cooling Patio ceiling, and exterior walls. For iteration 1 of the test building design included a timber open-joint cladding system wrapping every surface. Next, for iteration 2, the cladding system wrapped only on the exterior wall faces of the buildings and the adjoining chimney faces. However, thin sheet metal covered the roof, cooling patio ceiling, and the chimney faces which touch those surfaces.

The consistent cladding of iteration 1 appealed better to the monolithic nature of the SIPs structure. It also reinforced the importance of the chimneys to the buildings as a whole from the exterior. From there the team began to test if the timber was the correct mono-material for the test buildings. Seen above are renderings testing different materials for the cladding, columns, retaining walls, and benches. It is important to view these materials as they interact in the Cooling Patio. While sheet metal and polycarbonate cladding options may look more monolithic, timber is a low carbon material that better represents the heart of the project. In some cases, timber as a building material acts as a carbon-sink meaning it stores and processes more carbon than it produces. This of course relates strongly to the passive goals of the Thermal Mass and Buoyancy Ventilation Research.

Recycled Retaining Wall

Now the team is settled on the timber cladding, but they are not convinced of the retaining wall and bench materials. These aspects want to be a more earthen material as they rise from the ground towards the test buildings. After investigating rammed earth and concrete, the team wanted to find something more stackable. Concrete and rammed earth are beautiful, but they require formwork which requires more time. Something stackable will give the team more flexibility as well as members are movable.

Thankfully, down here on Highway 61 road work is being done to remove a load of 8″ x 8″ x 8′ stackable concrete barriers. The TMBVRP team is getting their hands on some of these reusable members and are calling around to local highway departments to find more similar materials. If they find enough, they will have a durable, stackable, and reusable material for their Cooling Patio. They can also use the old sidewalk pieces as a mosaic, ground material for the Cooling Patio. Above are drawings showing the use of these recycled materials.

Structure and Detailing

For the past three weeks, the team has been meeting consistently with Structural engineer Joe Farrugia. He is guiding the team through lots of math to size their columns. While the gravity load on the columns is extremely manageable, the wind load is more difficult. The test buildings height means they will face more wind load than a structure this size typically experiences. However, Joe is confident that the structural system the team has chosen is doable with the correct column sizing.

While the team is attempting to draw every detail of the test buildings, they’ve found the trickiest spots to be around the chimneys. Making sure water moves off the roof consistently and air moves behind the ventilated screen is crucial. The TMBVRP will spare you the pain of walking through each flashing bend and board cut. Struggles emerge when the chimneys converge with the angled roof, but it’s very doable with lots of thinking, drawing, and redrawing. Then Andrew Freear and Steve Long, come in to save the day because how you’ve redrawn it five times is still wrong. Lots of covered wall reviews later and the TMBVRP team is on their way to compiling all the details in a digital model and drawing set.

Looking forward to keeping this momentum going, the TMBVRP can be found in Red Barn from dawn to dusk. Feel free to bring by some late-night snacks but for now thanks for TUNING in!

Concrete Content

Live from—wait, is that a 3′ x 4′ concrete panel? Lately, Thermal Mass and Buoyancy Ventilation Research Project Team has been delving into the interior of the test buildings. Inside, Wood and concrete thermal mass line the walls of the test buildings. The thermal masses thickness and surface area are optimally proportioned based on the thermal properties of the materials, size of the room, and ventilation required. This proportioning makes the whole passive temperature and ventilation control strategy tick. Therefore, the TMBVRP team must figure out an elegant solution for hanging the thermal mass to create a beautiful interior which also operates optimally. Let’s take a look at how they are tackling this task. Hint: it involves very big concrete panels …

Typically, designers think of concrete as the go-to material used in passive thermal mass strategies. This is why the TMBVRP team is testing it in the Testing Buildings alongside the more surprising material; Southern Yellow Pine. If you remember from previous posts when the materials are proportioned properly using the Optimal Tuning Strategy they can be equally effective at cooling and creating buoyancy ventilation cycles.

However, when it comes to hanging the two materials on the SIPs walls, Pine is obviously much more straight forward. The pine boards attach to the SIPs panel walls with a simple screw. Well, multiple simple screws. On the other hand, the team will have to get much more creative to secure the concrete panels.

To start, the team tested two strategies hanging concrete panels; masonry anchors and cone form ties. First, they cast the masonry anchors and cone form ties into two 12″ x 12″ concrete panels. Similar to the panels in the Concrete Test Box in size, but different in the attachment system as the security of the panels in the test box is far less crucial as no one will be sleeping in it. Both test panels are attached at all four corners to shear walls in the Red Barn.

Masonry anchors are fluted plastic chambers that adhere to the concrete and are screwed through tp attach concrete to wall. They allow for a connection point that looks as if the screw passes directly through the concrete. However, for the sake of durability, the team would include a washer in this scheme to keep the screw from bearing into the concrete.

Likewise, the cone form ties act the same as the masonry anchor, but are larger in diameter and thickness. Also, they are able to set into the concrete to create a nice reveal. While the team liked the effect of this reveal, team collaborator Professor Salmaan Craig revealed a possible hurdle for the experiment. Revealing edges at the attachment points could slightly disturb the direction of heat transfer. The direction of heat transfer is integral to the strategy which is why the panels are insulated on the back. And, while this is a very small area that could be affected it is multiplied enormously by the number of panels and screws. We call this problem, fastener effect loss. Fastener effect loss assumes, very conservatively, that the small area around the reveal is ineffective to the system.

Next, the team ran the numbers and if all the panels were 12″ x 12″ with four form ties each, 6% of the thermal mass would be lost to faster effect. Now, that’s not bad at all for a real building, and again that’s an extremely conservative estimate. However, for an experiment establishing the most ideal situation for a small building, 6% is not negligible enough. Going forward, if the team prefers the cone form ties, they will need to lessen the amount of panels therefore lessening the number of form ties. Fewer form ties means less fastener effect loss. Fewer form ties also means bigger panels. The team sketched out many different possible panel arrangements but decided they needed to test just how large they could cast a concrete panel. Above on the far right, you will see their biggest panel possible design. This design consists of 3′ x 4′ panels in a running bond pattern.

Next, Jeff and Rowe got to work creating the panels for biggest panel possible design. The estimated weight for these panels is 200 lbs. While this is fairly difficultl for construction, the size of panel cuts down on the number of panels needed from 128 to 39. So while it may be hard to lift, the team would have to make far fewer panels. And the fastener effect loss shrinks exponentially as the design goes from using over 500 screws and form ties to under 200. The question still remains, however, will the panels crack at this size?

To address the issue of cracking concrete panels, the team tested two different mixes for their large panels. If you remember from their blog post on concrete thermal property testing, the team obtained the thermal property data from three different standard concrete mixes. They ended up using the Quikrete Pro-Finsh for the Concrete Test Box, but thought for the large panels they should also try the Quikrete Fiber-reinforced mix. The fiber-reinforced mix is increased in structural integrity which will be beneficial for larger panels by reducing possible cracking. Jeff and Rowe built two form works to test both mixes at the 3′ x 4′ panel size.

Look at that! Both the fiber-reinforced and smooth finish concrete mixes came out great! Very smooth with zero cracks, but very heavy. Above you see the fiber-reinforced panel which turned out just as good as the professional finish and would be much stronger. This does not mean that the team will be using the enormous panels, most likely they will cut them in half. However, the team now knows their largest limit on size is possible. The team will continue to weigh their options between attachment method, panel size, and panel arrangements as they solidify their design. Keep tuning in to see where these crazy kids and their crazy concrete end up!

Raising Chimney

Live from HomeLab, it’s the Graduate Program! The Thermal Mass and Buoyancy Ventilation Research Project team members are officially Rural Studio master’s students. The team’s summer semester has started off hot with ventilation opening calibration.

Even with the latest ventilation opening adjustment, described in our airflow post, the data from the Concrete Chimney Experiment reveals the airflow is still choked. As you can see in the temperature signal graph below, the thermal mass surface temperature never rises above the interior air temperature as it should in an optimally tuned space. If we then look at the airflow graph below, we see that the updraft, bulk airflow during the night, is nearly double the downdraft, bulk airflow during the day. When the blue line is above zero, the system is in updraft and when below zero it is in downdraft. Both of these graphs allude that the thermal storage cycle and the buoyancy ventilation cycle are out of sync. This is due to a lack of air. Air drives the cycles as it brings warm air into the chimney to be absorbed and offloaded by the thermal mass.

The team examined their previous math for calculating the total area for the ventilation opening. They’ll spare you the gory details, but the predicted bulk air flow rate they were using to calculate the size was too small resulting in a ventilation opening that was too small. Thanks to the airflow sensors they no longer needed to use a predicted air flow rate and instead used the actual average airflow rate coming from the Concrete Chimney Experiment. After this recalculation the ventilation opening nearly doubled from 3/4” to 1 1/8”. The team then let the chimney do her thing for a week.

a graph showing two days of temperature signals, where the air temperature falls below the panel temperature
Black = Exterior Air
Dashed Gray = Interior Air
Orange = Thermal Mass Surface,
Dashed Orange = Thermal Mass Interior

The data is in and it is as hot as the Alabama asphalt. The team, along with their colleagues were correct in their assumption that the flow was being choked AND the new ventilation opening size is allowing the chimney to operate optimally! In the temperature signal graphs, the thermal mass surface temperature and the interior air temperature properly oscillate. Therefore, the thermal mass is absorbing the heat properly allowing it to be warmer than the interior air at times.

a graph showing two days of airflow data, where the downdraft is larger than the udraft
Blue = Bulk Air Flow

As you can see from the airflow graphs, the bulk airflow of the updraft and the down draft has equalized and is becoming more symmetrical. Both outcomes, in temperature and airflow, reveal there is now a proper amount of air moving through the chimney. The downdraft is still a bit more turbulent than the updraft however and the team wondered if this was due to the concrete pad underneath the chimney releasing heat it absorbed throughout the day. To combat this heat, the team jacked up their Concrete Chimney Experiment… literally!

To raise the chimney, in order to give it some more height via cinder blocks, the Thermal Mass and Buoyancy Ventilation Research Project used car jacks. The team will see if this helps with the heat interference and its possible effects on the air flow. 

two small white dogs in a car

As you can see Wolfie is still in town on his summer vacation! He and Copper like to observe the team work. To insure their safety as the chimney was being raised they watched from inside the car. They really love the car. For more science, design, and cute pets, stay tuned!

Calibrate and Graduate

Team is posing with their new outfit

Exciting things have been happening at HomeLab lately! First, the Thermal Mass and Buoyancy Ventilation Research Project (TMBVRP) Team were able to install airflow sensors into the Concrete Chimney Experiment. Second, the chimney has brought in some impressive data. And third, the TMBVRP team participated in an end of the semester presentation and round table discussion with their big sister team, the Mass Timber Breathing Wall Research Project, and a cast of professionals in the architecture and building science research field.

This week the team received their Sensirion differential pressure air flow sensors. The sensors record a difference in dynamic and static pressure which the team uses to calculate bulk flow. Bulk flow is the total airflow at the sensor location. The team installed two sensors into the Concrete Chimney Experiment, one at the bottom and one at the top, to measure updraft and downdraft ventilation created by the thermal mass.

Just to refresh your memory, updraft occurs during the night when the cool, night air is brought in the bottom ventilation opening, warmed by the thermal mass, and exhausted out the top. Downdraft occurs during the day, the warm, exterior air is drawn into the top ventilation opening, is cooled by offloading heat to the thermal mass,  and vents out the bottom.  Being able to measure the direction and amount of ventilation is critical to understand if the Concrete Chimney Experiment is performing as expected.

And the results are in, our initial measurements from the airflow sensors do show that during the day the chimney is operating in downdraft and during the night it operates in updraft. This gives us proof of concept, that thermal mass is able to alter the atmosphere inside the chimney so that it goes against the exterior environment.

graph showing airflow in the test chimney

The GreenTeg temperature sensors have also brought in proof of concept data, showing that the thermal mass is having a damping effect on the interior air. It is important that the temperatures of the thermal mass and interior air cycle with the daily swing in temperature so that heat is absorbed by the mass during the day and offloaded during the night. This shows that the internal thermal mass is effectively moderating the temperature in the chimney and causing continuous ventilation. We are continuing our testing to further calibrate the amount of ventilation to achieve the most efficient and effective heat transfer between the internal thermal mass and air.

Temperature signal graph comparison

To wrap up our undergraduate work, we had a roundtable presentation via Zoom to give an update on where our work is and share our exciting results with Auburn, our collaborators at McGill, and professionals in the architecture and building science research field.  This panel included Billie Faircloth, a partner and research director at the architecture firm Kieran Timberlake in Philadelphia, PA.  Second, we were joined by Jonathan Grinham, who is a Lecturer in Architecture and Research Associate at the Harvard University Graduate School of Design.  Last but not least, is Z Smith.  Z is a Principal and the Director of Sustainability & Performance at Eskew Dumez Ripple in New Orleans, LA.  

It was a privilege to be able to present and have a productive discussion with such esteemed professionals.  We gained valuable insight on how to best relay the work we are doing do both those in the research field and the common person. In addition, their backgrounds led to an intriguing discussion on how The Optimal Tuning Strategy could be implemented at the building scale. It was especially awesome to discuss the successful data the team recently got form the Concrete Chimney Experiment. Both the data and the discussion gave the Thermal Mass and Buoyancy Ventilation Research Project Team a boost of confidence and pride in their work. It not always easy for these architecture students to wrap their heads around the science, but the hard work paid off. Thank you to Rural Studio, Salmaan Craig, Kiel Moe, David Kennedy, and the reviewers for a positive end of the undergraduate phase of the Thermal Mass and Buoyancy Ventilation Research Project.

Final shout out to the incredible Mass Timber Breathing Wall Research Project Team. As they complete the paper on their research and graduate from the Master’s program they still had time to do something very sweet for their little sister team. They passed along their Rural Studio lab coats, crossing out their names and writing the names of the TMBVRP team members. Their work, dedication, and attitude could not be a better example for the TMBVRP team to emulate. From one research project team to the other, thank you for helping us whenever we needed and being the best big sister team imaginable. We hope to live up the legacy! Well, everyone, stay tuned (optimally tuned) this summer for the start of the graduate program at HomeLab.

Temperature Swings

Now that the Concrete Chimney Experiment is built, let’s take a look at what should be going on inside! To understand if the Optimal Tuning Strategy is cooling and ventilating the space within the chimney, we compare four temperature signals. Quick reminder, the Optimal Tuning Strategy refers to the set of mathematical scaling rules that proportion thermal mass and buoyancy ventilation to act together in a natural feedback loop. The Thermal Mass and Buoyancy Ventilation Research Project team prefer nicknames, typing their project name is enough work.

Let’s take a look at these four temperature signals which identify how effectively the Optimal Tuning Strategy is operating with the Concrete Chimney Experiment. The temperature signals are; exterior air temperature, interior air temperature, thermal mass surface temperature, and thermal mass interior temperature. These temperatures are taken within the chimney using GreenTeg sensors. The exterior air temperature is the temperature of the air outside, like the temperature you read on a forecast. The interior air temperature is the temperature of the air within the chimney, like the temperature you read on your thermostat in your home. The thermal mass surface temperature measures the temperature of the surface of the concrete panel. This surface interacts with the interior air. The thermal mass interior temperature is the temperature inside the mass. We can use a melting ice cube to understand the difference in the thermal mass temperatures. When an ice cube melts, the surface melts first while the center of the cube remains frozen. So, the surface and interior temperatures of the thermal mass can differ just as the outdoor and indoor temperatures can.

Theses four temperature signals describe if the thermal mass is absorbing and offloading heat from the air which should, in turn, drive conveyance ventilation cycles. The times of day the mass is absorbing and offloading heat should be relatively consistent day-to-day due to the diurnal cycle. The diurnal cycle is the variation between a high temperature and a low temperature that occurs during the same day. In other words, for most days the temperature rises until a peak typically in the afternoon and then falls again until reaching a low before the sun begins to rise again.

Each day the cycle repeats. Though the time of day of the high and low can vary. Here, you can see the diurnal cycle for a typical summer day in Hale County. We can then normalize that temperature swing into a Sin Wave for mathematical analysis. This is the exterior air temperature.

To see how all these temperatures should compare to each other throughout the day we can look at this graph. Notice the axis of temperature and time are simplified radially, but we are still looking at a full day with a typical temperature swing. This graph represents an Optimally Tuned space where the proportions of thermal mass and buoyancy ventilation are ideally balanced. The solid black line represents the exterior air temperature. The dotted gray line represents the interior air temperature. The solid orange line represents the thermal mass interior temperature. The dotted orange line represents the thermal mass surface temperature. As you can see, the interior air temperature is never hotter or cooler than the exterior air temperature. It is dampened by the thermal mass absorbing and offloading heat from the interior space. The thermal mass surface and interior temperatures show the mass warming by the absorption of heat from the air and cooling when the heat releases back into space. When the thermal mass and buoyancy ventilation proportions are not balanced the graph looks drastically different.

On the left, you see what it would be like if there were a lot more ventilation and a lot less thermal mass. Too much ventilation causes the interior environment to act just like the exterior environment and there is not enough thermal mass to affect the space. This would be like being in a tent. On the right, you see what it would be like if there were a lot less ventilation and a lot more thermal mass. Too little ventilation does not bring in enough heat for the thermal mass to absorb. The thermal mass is also so large it takes too much heat to fill up, which means it takes longer for the mass to start offloading it into the space. This is like being in a cave.

temperature signal graph
Temperature signal data graphed to compare to ideal Optimal

Finally, here is some of the data we have pulled from our sensors so far! Although the Concrete Chimney Experiment is definitely damping the temperature within the space the thermal mass temperatures are essentially the same. This means we may not have enough ventilation, not enough heat being brought in with be absorbed and offloaded. We are working on getting airflow sensors to see if this could be the case. The team is also recalculating the size needed for the ventilation openings.

If you stuck around until the end of this one, big thanks! Here’s a picture of Cory’s kittens Rosemary and Dijon to ease your mind. As always, we will be back soon with more rural science so stay tuned…. optimally tuned.